160 research outputs found

    Nucleotide variation, haplotype structure, and association with end-stage renal disease of the human interleukin-1 gene cluster

    Get PDF
    A dense gene-based SNP map was constructed across a 360-kb region containing the interleukin-1 gene cluster (IL1A, IL1B, and IL1RN), focusing on IL1RN. In total, 95 polymorphisms were confirmed or identified primarily by direct sequencing. Polymorphisms were precisely mapped to completed BAC and genomic sequences spanning this region. The polymorphisms were typed in 443 case-control subjects from Caucasian and African American groups. Consecutive pair-wise marker linkage disequilibrium was not strictly correlated with distance and ranged from D′ = 0.0079 to 1.000 and D′ = 0.0521 to 1.0000 in Caucasians and African Americans, respectively. Single markers and haplotypes in IL1 cluster genes were evaluated for association with end-stage renal disease (ESRD). Eleven SNPs show some evidence of association with ESRD, with the strongest associations in two IL1A variants, one SNP, rs1516792-3, in intron 5 (p = 0.0015) and a 4-bp insertion/deletion within the 3′UTR, rs16347-2 (p = 0.0024), among African Americans with non-T2DM-associated ESRD

    Cosmological distance indicators

    Full text link
    We review three distance measurement techniques beyond the local universe: (1) gravitational lens time delays, (2) baryon acoustic oscillation (BAO), and (3) HI intensity mapping. We describe the principles and theory behind each method, the ingredients needed for measuring such distances, the current observational results, and future prospects. Time delays from strongly lensed quasars currently provide constraints on H0H_0 with < 4% uncertainty, and with 1% within reach from ongoing surveys and efforts. Recent exciting discoveries of strongly lensed supernovae hold great promise for time-delay cosmography. BAO features have been detected in redshift surveys up to z <~ 0.8 with galaxies and z ~ 2 with Ly-α\alpha forest, providing precise distance measurements and H0H_0 with < 2% uncertainty in flat Λ\LambdaCDM. Future BAO surveys will probe the distance scale with percent-level precision. HI intensity mapping has great potential to map BAO distances at z ~ 0.8 and beyond with precisions of a few percent. The next years ahead will be exciting as various cosmological probes reach 1% uncertainty in determining H0H_0, to assess the current tension in H0H_0 measurements that could indicate new physics.Comment: Review article accepted for publication in Space Science Reviews (Springer), 45 pages, 10 figures. Chapter of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Ag

    Impacto da adubação orgânica sobre a incidência de tripes em cebola.

    Get PDF
    Analisou-se a relação entre adubação orgânica e a incidência de Thrips tabaci Lind. em cebola (Allium cepa L), na EE de Ituporanga,entre agosto e dezembro de 1998. Os tratamentos foram determinados de acordo com a necessidade de N para a cultura pela análise de solo. Empregou-se como fonte orgânica diversos adubos fornecendo 75 Kg/ha de N (esterco suíno; adubo Barriga Verde proveniente de esterco de aves; composto orgânico; esterco de peru; húmus); 37,5 Kg/ha de N (metade da dose normal com esterco de suíno); as testemunhas foram adubação mineral fornecendo 30-120-60 kg/ha de N-P2O5-K2O e o dobro da dose (60-240-120 kg/ha de N-P2O5-K2O); e testemunha sem adubação. Nenhum tratamento apresentou incidência de T. tabaci superior à testemunha sem adubo. A adubação mineral em relação à orgânica não favoreceu significativamente a incidência de T. tabaci . O processo de conversão do manejo do solo da área experimental de convencional para orgânico pode ter favorecido a infestação similar do inseto entre tratamentos. No período de maior incidência de T. tabaci, a relação com nutrientes foi descrita por um modelo envolvendo K/Zn, B e N de maneira positiva. A correlação entre nutrientes e T. tabaci não foi linear na maioria das avaliações. A adubação orgânica pode substituir a adubação mineral na cultura da cebola, pois foi possível atingir níveis de produtividade similares para ambos tratamentos

    Combining Optimization and Randomization Approaches for the Design of Clinical Trials

    Get PDF
    t Intentional sampling methods are non-randomized procedures that select a group of individuals for a sample with the purpose of meeting specific prescribed criteria. In this paper we extend previous works related to intentional sampling, and address the problem of sequential allocation for clinical trials with few patients. Roughly speaking, patients are enrolled sequentially, according to the order in which they start the treatment at the clinic or hospital. The allocation problem consists in assigning each new patient to one, and only one, of the alternative treatment arms. The main requisite is that the profiles in the alternative arms remain similar with respect to some relevant patients’ attributes (age, gender, disease, symptom severity and others). We perform numerical experiments based on a real case study and discuss how to conveniently set up perturbation parameters, in order to yield a suitable balance between optimality – the similarity among the relative frequencies of patients in the several categories for both arms, and decoupling – the absence of a tendency to allocate each pair of patients consistently to the same arm

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.

    Get PDF
    Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas

    Get PDF
    We analyzed 921 adenocarcinomas of the esophagus, stomach, colon, and rectum to examine shared and distinguishing molecular characteristics of gastrointestinal tract adenocarcinomas (GIACs). Hypermutated tumors were distinct regardless of cancer type and comprised those enriched for insertions/deletions, representing microsatellite instability cases with epigenetic silencing of MLH1 in the context of CpG island methylator phenotype, plus tumors with elevated single-nucleotide variants associated with mutations in POLE. Tumors with chromosomal instability were diverse, with gastroesophageal adenocarcinomas harboring fragmented genomes associated with genomic doubling and distinct mutational signatures. We identified a group of tumors in the colon and rectum lacking hypermutation and aneuploidy termed genome stable and enriched in DNA hypermethylation and mutations in KRAS, SOX9, and PCBP1. Liu et al. analyze 921 gastrointestinal (GI) tract adenocarcinomas and find that hypermutated tumors are enriched for insertions/deletions, upper GI tumors with chromosomal instability harbor fragmented genomes, and a group of genome-stable colorectal tumors are enriched in mutations in SOX9 and PCBP1
    corecore